138 research outputs found

    Spleen tyrosine kinase mediates innate and adaptive immune crosstalk in SARS-CoV-2 mRNA vaccination

    Get PDF
    Durable cell-mediated immune responses require efficient innate immune signaling and the release of pro-inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS-CoV-2 mRNA vaccination primes human monocyte-derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3-driven pyroptotic cell death and subsequently secrete mature interleukin-1β. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C-type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage-driven activation of effector memory T cells. Furthermore, vaccination-induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime-boost concepts to augment innate immune signaling in SARS-CoV-2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein-specific T cell responses

    Peripheral blood stem cell graft compared to bone marrow after reduced intensity conditioning regimens for acute leukemia: a report from the ALWP of the EBMT

    Get PDF
    Increasing numbers of patients are receiving reduced intensity conditioning regimen allogeneic hematopoietic stem cell transplantation. We hypothesized that the use of bone marrow graft might decrease the risk of graft-versus-host disease compared to peripheral blood after reduced intensity conditioning regimens without compromising graft-versus-leukemia effects. Patients who underwent reduced intensity conditioning regimen allogeneic hematopoietic stem cell transplantation from 2000 to 2012 for acute leukemia, and who were reported to the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation were included in the study. Eight hundred and thirty-seven patients receiving bone marrow grafts were compared with 9011 peripheral blood transplant recipients after reduced intensity conditioning regimen. Median follow up of surviving patients was 27 months. Cumulative incidence of engraftment (neutrophil ≥0.5×10(9)/L at day 60) was lower in bone marrow recipients: 88% versus 95% (P<0.0001). Grade II to IV acute graft-versus-host disease was lower in bone marrow recipients: 19% versus 24% for peripheral blood (P=0.005). In multivariate analysis, after adjusting for differences between both groups, overall survival [Hazard Ratio (HR) 0.90; P=0.05] and leukemia-free survival (HR 0.88; P=0.01) were higher in patients transplanted with peripheral blood compared to bone marrow grafts. Furthermore, peripheral blood graft was also associated with decreased risk of relapse (HR 0.78; P=0.0001). There was no significant difference in non-relapse mortality between recipients of bone marrow and peripheral blood grafts, and chronic graft-versus-host disease was significantly higher after peripheral blood grafts (HR 1.38; P<0.0001). Despite the limitation of a retrospective registry-based study, we found that peripheral blood grafts after reduced intensity conditioning regimens had better overall and leukemia-free survival than bone marrow grafts. However, there is an increase in chronic graft-versus-host disease after peripheral blood grafts. Long-term follow up is needed to clarify whether chronic graft-versus-host disease might increase the risk of late morbidity and mortality

    A model for predicting effect of treatment on progression-free survival using MRD as a surrogate end point in CLL

    Get PDF
    Our objective was to evaluate minimal residual disease (MRD) at the end of induction treatment with chemoimmunotherapy as a surrogate end point for progression-free survival (PFS) in chronic lymphocytic leukemia (CLL) based on 3 randomized, phase 3 clinical trials (ClinicalTrials.gov identifiers NCT00281918, NCT00769522, and NCT02053610). MRD was measured in peripheral blood (PB) from treatment-naĂŻve patients in the CLL8, CLL10, and CLL11 clinical trials, and quantified by 4-color flow cytometry or allele-specific oligonucleotide real-time quantitative polymerase chain reaction. A meta-regression model was developed to predict treatment effect on PFS using treatment effect on PB-MRD. PB-MRD levels were measured in 393, 337, and 474 patients from CLL8, CLL10, and CLL11, respectively. The model demonstrated a statistically significant relationship between treatment effect on PB-MRD and treatment effect on PFS. As the difference between treatment arms in PB-MRD response rates increased, a reduction in the risk of progression or death was observed; for each unit increase in the (log) ratio of MRD2 rates between arms, the log of the PFS hazard ratio decreased by 20.188 (95% confidence interval, 20.321 to 20.055; P 5 .008). External model validation on the REACH trial and sensitivity analyses confirm the robustness and applicability of the surrogacy model. Our surrogacy model supports use of PB-MRD as a primary end point in randomized clinical trials of chemoimmunotherapy in CLL. Additional CLL trial data are required to establish a more precise quantitative relationship between MRD and PFS, and to support general applicability of MRD surrogacy for PFS across diverse patient characteristics, treatment regimens, and different treatment mechanisms of action

    Paleo-Immunology: Evidence Consistent with Insertion of a Primordial Herpes Virus-Like Element in the Origins of Acquired Immunity

    Get PDF
    BACKGROUND:The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the "RAG transposon". METHODOLOGY/PRINCIPAL FINDINGS:Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a "RAG transposon." A subsequent "arms race" between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). CONCLUSIONS/SIGNIFICANCE:A "co-regulatory" model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the "RAG-transposon" hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination

    Transplant results in adults with Fanconi anaemia

    Get PDF

    Comprehensive genomic profiles of small cell lung cancer

    Get PDF
    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer

    Immunological fingerprint in coronavirus disease-19 convalescents with and without post-COVID syndrome

    Get PDF
    BackgroundSymptoms lasting longer than 12  weeks after severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection are called post-coronavirus disease (COVID) syndrome (PCS). The identification of new biomarkers that predict the occurrence or course of PCS in terms of a post-viral syndrome is vital. T-cell dysfunction, cytokine imbalance, and impaired autoimmunity have been reported in PCS. Nevertheless, there is still a lack of conclusive information on the underlying mechanisms due to, among other things, a lack of controlled study designs.MethodsHere, we conducted a prospective, controlled study to characterize the humoral and cellular immune response in unvaccinated patients with and without PCS following SARS-CoV-2 infection over 7 months and unexposed donors.ResultsPatients with PCS showed as early as 6 weeks and 7 months after symptom onset significantly increased frequencies of SARS-CoV-2-specific CD4+ and CD8+ T-cells secreting IFNγ, TNF, and expressing CD40L, as well as plasmacytoid dendritic cells (pDC) with an activated phenotype. Remarkably, the immunosuppressive counterparts type 1 regulatory T-cells (TR1: CD49b/LAG-3+) and IL-4 were more abundant in PCS+.ConclusionThis work describes immunological alterations between inflammation and immunosuppression in COVID-19 convalescents with and without PCS, which may provide potential directions for future epidemiological investigations and targeted treatments

    New concepts for approval of drugs in oncology beyond randomized clinical studies

    No full text
    Background In recent years a large number of biomarker-stratified targeted and immunological treatment procedures were introduced in oncology. Higher efficacy has been shown in subgroups of patients with these drugs compared to the standard of care; however, due to the low numbers of patients within some subgroups confirmatory phase III trials are sometimes not feasible and the proof-of-principle is increasingly shifted towards early study phases. The approval authorities in the USA and the European Union have recognized these difficulties and established new instruments to accelerate and simplify drug approval. This development is accompanied by innovative trial designs that can provide relevant data for drug approval in early study phases. Objective Summary and discussion of innovative trial designs and approval procedures in oncology. Material and methods A systematic search was carried out in the medical literature database PubMed () for articles on approval procedures and trial designs in oncology as well as the websites of the European Medicines Agency (EMA), the US Food and Drug Administration (FDA) and the Federal Institute for Drugs and Medical Devices (Bundesamt fur Arzneimittel und Medizinprodukte, BfArM). Results and discussion A growing number of drugs are being approved within accelerated approval procedures in oncology. The FDA programs, such as the breakthrough designation and the accelerated approval procedures have been especially successful. Systematic analyses revealed that the time to the first use in patients was significantly shortened. Based on new designs, such as basket trials, approvals were granted in the USA for histology-independent personalized treatment for patient subgroups. Despite these achievements, criticism has arisen concerning the sometimes preliminary nature of data on safety and efficacy on which accelerated approval is based
    • …
    corecore